CMB temperature bispectrum induced by cosmic strings
نویسندگان
چکیده
The cosmic microwave background (CMB) bispectrum of the temperature anisotropies induced by a network of cosmic strings is derived for small angular scales, under the assumption that the principal cause of temperature fluctuations is the Gott-Kaiser-Stebbins effect. We provide analytical expressions for all isosceles triangle configurations in Fourier space. Their overall amplitude is amplified as the inverse cube of the angle and diverges for flat triangles. The isosceles configurations generically lead to a negative bispectrum with a power-law decay ‘ 6 for large multipole ‘. However, collapsed triangles are found to be associated with a positive bispectrum whereas the squeezed triangles still exhibit negative values. We then compare our analytical estimates to a direct computation of the bispectrum from a set of 300 statistically independent temperature maps obtained from Nambu-Goto cosmic string simulations in a Friedmann-Lemaı̂tre-Robertson-Walker universe. We find good agreement for the overall amplitude, the power-law behavior, and the angle dependency of the various triangle configurations. At ‘ 500 the cosmic string Gott-Kaiser-Stebbins effect contributes approximately the same equilateral CMB bispectrum amplitude as an inflationary model with jfloc NLj ’ 10, if the strings contribute about 10% of the temperature power spectrum at ‘ 1⁄4 10. Current bounds on fNL are not derived using cosmic string bispectrum templates, and so our fNL estimate cannot be used to derive bounds on strings. However it does suggest that string bispectrum templates should be included in the search of CMB non-Gaussianities.
منابع مشابه
The CMB temperature bispectrum induced by cosmic strings
This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version. Copyright and all moral rights to the version of the paper presented here belong to the individual ...
متن کاملImprint of Reionization on the Cosmic Microwave Background Bispectrum
We study contributions to the cosmic microwave background (CMB) bispectrum from non-Gaussianity induced by secondary anisotropies during reionization. Large-scale structure in the reionized epoch both gravitational lenses CMB photons and produces Doppler shifts in their temperature from scattering off electrons in infall. The resulting correlation is potentially observable through the CMB bispe...
متن کاملImpact of polarization on the intrinsic cosmic microwave background bispectrum
We compute the cosmic microwave background (CMB) bispectrum induced by the evolution of the primordial density perturbations, including for the first time both temperature and polarization using a second-order Boltzmann code. We show that including polarization can increase the signal-to-noise by a factor 4 with respect to temperature alone. We find the expected signal-to-noise for this intrins...
متن کاملThe Angular Trispectra of CMB Temperature and Polarization
We develop the formalism necessary to study four-point functions of the cosmic microwave background (CMB) temperature and polarization fields. We determine the general form of CMB trispectra, with the constraints imposed by the assumption of statistical isotropy of the CMB fields, and derive expressions for their estimators, as well as their Gaussian noise properties. We apply these techniques ...
متن کاملSquared temperature-temperature power spectrum as a probe of the CMB bispectrum
It is now well known that mode-coupling effects associated with certain secondary effects generate higher order correlations in cosmic microwave background ~CMB! temperature anisotropies, beyond the two-point function. In order to extract such a non-Gaussian signal at the three-point level, we suggest a two-point statistic in the form of an angular power spectrum involving correlations between ...
متن کامل